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Let us represent the solution of the equation of equilibrium in terms of 

displacements 

where A is the Laplace operator, A is the Hamilton operator [ 1 1, v * = 
F7 k7 (the operators are multiplied dyadically), Z-J is Poisson’s ratio, and 

the dot indicates scalar multiplication in the form 

II = ctR + 3 (vR).r -1 -;r.(oR) + “or (o.R) -+ zr2 (vJ".R) (2). 

where a. fl. y, 6. 6 are constants subject to determination, R is an arbi- 

trary harmonic vector, r is the radius vector, r2 = r * r. In expression 
(2). the terms with R and r . (v Rf are harmonic and the terms with (VR)- r. 

rtv- R) and r2(V2R) are biharmonic functions.Substituting (2) into flf, 

we obtain the conditions which have to be satisfied by the constants a. 

p* y, 6, t:: 

Having determined Q and y from (31, we obtain the solution of equation 

(1) in the form 

u=[(4v-33) p+4(1--v) (E--^O)]R+fi(vR).r+ 

_t[2(4v-3)c-_F]r.(oR);-Cr(~.R)_t~ra(0~.R) (4) 

where ,8, 8, F are now arbitrary constants which can be used to obtain all 
the so far known forms of the general solution, as well as a number of 

new ones. 
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Thus for 6 = 6 = 0. (3 = - 1 we obtain the Popkovich-Neuber [2,3 1 so- 
lution 

ul= (3 - 4v) R,-- (VR,)-r (5) 

For E = fi = 0, 6 = - 1 we obtain a solution indicated in papers [4-6 I : 

u~=~(~-~)R&-~~(VR~)---~((C~R~) (6) 

For E = - 1. 8 = 2(1 - 2~). @ = - 4(1 - v) we obtain a solution indi- 

cated in [ 3 I : 

u,=2(1.-2v)r(V-R~)+4(l--)[~~(~R~)-(VR3)~r~-r2~V2~R~) i7) 

In addition to solutions (5) to (‘7) we obtain the following also from 

(4): 

for 

we have 

for 

we have 

1 B =o, 6 I- (4v 3) 2 - 
C=7-_8vl 7 - 8v 

2 (4v- 3) 1 
“4=4(1---)Rg+ ,_-v r(2;7.R,)‘+7TZ8~ra(VZ.RI) 

E== 1, 6 = 2 f4v - 3), P= 4(7-8v)(l-v) 
3 -4v 

ug= 4 (7 - 8v)( 1 -v) 
3 - 4v (X7W.r -!- 2 (4~ - 3) r (V.&J -t r2 (V2-R5) 

for 

I 
B = 0, F=S=8v_7 

we have 

1 

for 

we have 

E = 0, 6= -1, B=l 

UT= R7+ (VR)+r + r.(VR7) -F (V.R7) 

for 

E= 1, 81 -8(1--v), @I=9-8v 

(9) 
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we have 

“s=(9--v)[Rs+(VRs).r]+2r.(VRs)-8(1-v)r(~.Rs)+r*(~2.R 12) 

The solutions (8) to (12) are new. Solution (8) differs advantageously 

from the Papkovich-Neuber solution by the fact that it does not contain 

the gradient of the vector R, and as a consequence, is simpler in its 

structure than the latter (in solving a three-dimensional problem in 

curvilinear coordinates, it is simpler to find v - R. than I’ R, and 0 - R 
may be found directly). In solution (9) all the terms are biharmonic func- 

tions. Solution (10) is rather simple. In addition to solutions (8) to 

(12). there follows from (4) an infinite number of five-term solutions of 

the type (12), though with other coefficients. Solutions (8) to (12) will 

be called general, because for them 0. u f 0. V x u # 0 (an exception is 

represented by solution (11) for which v - u, = 0, VX u, f 0). In fact, 

substituting @, 6, E, corresponding to these solutions, into the express- 

ions for the divergence and the rotation of the displacement vector 

VXU = - 2 (1 - a~)[($ + E + 6) 77.R + 2&r. (02.R)] 

aXu=- [4(1-v) fi +2(i--~v)E+ (5-4~) F] VXR+ 

-I- ]2(4v--33) ~-s]r.(V~xR) + (6 -2c)(g2.R)Xr 

(13) 

(14) 

we see that the inequalities (13) are satisfied. A certain variety of 

forms of the solution may be obtained also on the basis that the algebraic 

sum of any solutions of equation (1) is also a solution of equation (1). 

Thus, setting R6 = - (8~ - 7)R5we obtain a new solution in the form 

It is easy to show that in order to reduce the solution (4) to the form 

of the Papkovich-Neuber solution (5), the following conditions must be 
satisfied 

F = - 2 (I-_:2v) E, (7 - 8v) F + 12 (3 -. 4v)2- 4 (1 - v)] E = 0 (W 

If these conditions are satisfied, solution (4) may be represented in 
the form 

u= (3-4v)D- (vD).r (17) 

where D is a harmonic factor having the form 

D=[-j3+6-2(4v-3)~]R+ 
2 (4v - 3) E - 6 

4 (1 -v) ]r.(VR) - (VR).rl --r (T7.R) (18) 

From solutions (6) to (12) only solution (‘7) may be reduced to the 

form (17). because its coefficients p, 6, c satisfy conditions (16). It 
should also be noted that the solutions (5) to (12) may be supplemented 

by a particular solution of equation (1) (such that v* ur = 0) in the 
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form of u = v F + v x T + f * v 3 e S. where F is an arbitrary harmonic 

scalar function, T and S are arbitrary harmonic vectors. As was shown in 

[5,7 1 there sometimes occurs the necessity to retain in (19) either F or 

T and S. In conclusion we write down the expression for the stress tensor 

LT, corresponding to the representation of a in the form (4) 

ci = 2& {[(4v - a)(~ f p) - (5 - 4~) 6](‘;7R + RV) - 8var+(~a’R) 1 + 

+ [2 (4v- 3) E - Zl[r-(VR) -+ (R02):-11 + (3 + 2a)[(Va.R) r -I- 

-!- r (V2.R)] + 2@ (VzR).r -i- [2F (l-2v) - 4v (E + B)I(O-RfI -I- 2w2 (OS-R)1 

where E is the modulus of elasticity and I is the unit tensor. 
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